Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation

Identifieur interne : 000B44 ( Main/Repository ); précédent : 000B43; suivant : 000B45

Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation

Auteurs : RBID : Pascal:13-0245491

Descripteurs français

English descriptors

Abstract

Germanium-based photodetectors are the standard technology used for radiometric measurement in the IR spectral range. Shallow PN+ junctions were obtained by using ion implantation in p-type germanium. N-type doping was achieved by phosphorus implantation at a dose of 1 × 1015 cm-2 doses and an energy of 150 keV followed by annealing at 600°C for 2 h. In order for the new detector to be used as a standard for radiometric measurement, a porous layer is introduced on the active surface. After metallisation by thermal evaporation of indium (In) on the front side and gold (Au) on the back side, the new porous germanium-based photodetector is essentially done. The electrical behaviour of this porous germanium photodiode is characterised by current- voltage measurements that are compared to the I-V characteristic of classical germanium photodiodes. The results of this study show a huge increase of the photocurrent, a significant increase of the shunt resistance and low series resistance. Effects of low shunt resistance are also discussed. AFM showed that the porous layer contributes to trap the incident optical radiation and to reduce the reflection coefficient fluctuations of the front face of the photodiode.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0245491

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation</title>
<author>
<name sortKey="Akkari, Emna" uniqKey="Akkari E">Emna Akkari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Activités de recherche: Métrologie des Rayonnements, Institut National des Sciences Appliquées et de Technologie, INSAT, BP676</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Tunis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Touayar, Oualid" uniqKey="Touayar O">Oualid Touayar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Activités de recherche: Métrologie des Rayonnements, Institut National des Sciences Appliquées et de Technologie, INSAT, BP676</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Tunis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Javier Del Campo, F" uniqKey="Javier Del Campo F">F. Javier Del Campo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universidad Autónoma de Barcelona, Bellaterra</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
<orgName type="university">Université autonome de Barcelone</orgName>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Montserrat, Josep" uniqKey="Montserrat J">Josep Montserrat</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universidad Autónoma de Barcelona, Bellaterra</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
<orgName type="university">Université autonome de Barcelone</orgName>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0245491</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0245491 INIST</idno>
<idno type="RBID">Pascal:13-0245491</idno>
<idno type="wicri:Area/Main/Corpus">000A22</idno>
<idno type="wicri:Area/Main/Repository">000B44</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1475-7435</idno>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<title level="j" type="main">International journal of nanotechnology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Atomic force microscopy</term>
<term>Detector</term>
<term>Dose</term>
<term>Electrical characteristic</term>
<term>Electrical properties</term>
<term>Evaporation</term>
<term>Fluctuations</term>
<term>Germanium</term>
<term>Ion implantation</term>
<term>Microelectronic fabrication</term>
<term>Nanotechnology</term>
<term>Nitrogen addition</term>
<term>Phosphorus</term>
<term>Photoconductivity</term>
<term>Photodetector</term>
<term>Photodiode</term>
<term>Photoelectric current</term>
<term>Porous material</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractéristique électrique</term>
<term>Germanium</term>
<term>Photodiode</term>
<term>Phosphore</term>
<term>Implantation ion</term>
<term>Photodétecteur</term>
<term>Addition azote</term>
<term>Dose</term>
<term>Recuit</term>
<term>Détecteur</term>
<term>Fabrication microélectronique</term>
<term>Evaporation</term>
<term>Caractéristique courant tension</term>
<term>Propriété électrique</term>
<term>Matériau poreux</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Microscopie force atomique</term>
<term>Fluctuation</term>
<term>Nanotechnologie</term>
<term>Substrat indium</term>
<term>Substrat or</term>
<term>8560G</term>
<term>0707D</term>
<term>6837P</term>
<term>8560</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Phosphore</term>
<term>Nanotechnologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Germanium-based photodetectors are the standard technology used for radiometric measurement in the IR spectral range. Shallow PN+ junctions were obtained by using ion implantation in p-type germanium. N-type doping was achieved by phosphorus implantation at a dose of 1 × 10
<sup>15</sup>
cm
<sup>-2</sup>
doses and an energy of 150 keV followed by annealing at 600°C for 2 h. In order for the new detector to be used as a standard for radiometric measurement, a porous layer is introduced on the active surface. After metallisation by thermal evaporation of indium (In) on the front side and gold (Au) on the back side, the new porous germanium-based photodetector is essentially done. The electrical behaviour of this porous germanium photodiode is characterised by current- voltage measurements that are compared to the I-V characteristic of classical germanium photodiodes. The results of this study show a huge increase of the photocurrent, a significant increase of the shunt resistance and low series resistance. Effects of low shunt resistance are also discussed. AFM showed that the porous layer contributes to trap the incident optical radiation and to reduce the reflection coefficient fluctuations of the front face of the photodiode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1475-7435</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. nanotechnol.</s0>
</fA03>
<fA05>
<s2>10</s2>
</fA05>
<fA06>
<s2>5-7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>NANOSCALE SCIENCE AND TECHNOLOGY</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AKKARI (Emna)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TOUAYAR (Oualid)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JAVIER DEL CAMPO (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MONTSERRAT (Josep)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ABDELGHANI (Adnane)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MENAA (Bouzid)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OBARE (Sherine O.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SCHONING (Michael J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Activités de recherche: Métrologie des Rayonnements, Institut National des Sciences Appliquées et de Technologie, INSAT, BP676</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universidad Autónoma de Barcelona, Bellaterra</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>National Institute of Applied Science and Technology, Nanotechnology Laboratory, Bp676, Centre Urbain Nord</s1>
<s2>1080 Charguia</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Fluorotronics, Inc., 2453 Cades Way</s1>
<s2>Vista, CA 92081</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of Chemistry, Western Michigan University</s1>
<s2>Kalamazoo, Michigan</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Institute of Nano-and Biotechnologies, Aachen University of Applied Sciences</s1>
<s2>Campus Jülich</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>553-562</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27530</s2>
<s5>354000503828380150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0245491</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Germanium-based photodetectors are the standard technology used for radiometric measurement in the IR spectral range. Shallow PN+ junctions were obtained by using ion implantation in p-type germanium. N-type doping was achieved by phosphorus implantation at a dose of 1 × 10
<sup>15</sup>
cm
<sup>-2</sup>
doses and an energy of 150 keV followed by annealing at 600°C for 2 h. In order for the new detector to be used as a standard for radiometric measurement, a porous layer is introduced on the active surface. After metallisation by thermal evaporation of indium (In) on the front side and gold (Au) on the back side, the new porous germanium-based photodetector is essentially done. The electrical behaviour of this porous germanium photodiode is characterised by current- voltage measurements that are compared to the I-V characteristic of classical germanium photodiodes. The results of this study show a huge increase of the photocurrent, a significant increase of the shunt resistance and low series resistance. Effects of low shunt resistance are also discussed. AFM showed that the porous layer contributes to trap the incident optical radiation and to reduce the reflection coefficient fluctuations of the front face of the photodiode.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A16C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Photodiode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Photodiode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fotodiodo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Phosphore</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Phosphorus</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fósforo</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Implantation ion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ion implantation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Implantación ión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Photodétecteur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Photodetector</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fotodetector</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition azote</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nitrogen addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición nitrógeno</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dose</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dose</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dosis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Détecteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Detector</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Detector</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Evaporation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Evaporation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Evaporación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériau poreux</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Porous material</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Material poroso</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fluctuation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Fluctuations</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Fluctuación</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Nanotechnologie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Nanotechnology</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Nanotecnología</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Substrat indium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Substrat or</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8560G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>8560</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Nanoscale Science and Technology Conference (NS&T)</s1>
<s3>Hammameth TUN</s3>
<s4>2012-03-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0245491
   |texte=   Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024